Is skilled at describing relationships among inscribed angles, tangent segments, radii, chords, arc lengths, and areas of sectors of circles.

Property	Diagram
The measure of the intercepted arc formed by a central angle is	
There are _to the measure of the central angle. (Nate)	
degrees in a semi-circle. (Olivia)	

There are \qquad degrees in a circle. (Bradley)

Find measure <SPT
 angle.(Drew)

If a radius is \qquad to a chord then the radius
\qquad the chord.(Heather)

If a radius ___ a chord then the radius ___ forresponding arc too. (Seth)

And don't forget about Pythagorean Theorem! It says:

If $\mathrm{C}=13$ and $\mathrm{a}=5$, find b .

Also, remember when you learned about triangle? Those
\qquad
\qquad ?

They are \qquad too! (Bradley)

If $m<A C B=3 x+10$ and $m<D C E=2 x-8$, find x.

If one side of a triangle inscribed in a circle is the \qquad of a circle, then the triangle is a \qquad and the angle opposite the diameter is the right angle. (Drew)

What is the $\mathrm{m}<\mathrm{ACB}$?

